# Elaine M. Landry

**ProfessorDepartment of PhilosophyUniversity of California, Davis**

**Papers available for download:**

- “How to be a structuralist all the way down”, to appear in
*Synthese*. - “How to be a structuralist all the way down”, slides for a talk at Stanford, Nov. 13, 2009.
- “Shared Structure Need Not Be Shared Set-Structure”,
*Synthese*158 (2007), pp. 1-17. - “Scientific Structuralism: Presentation and Representation” (co-author Katherine Brading),
*Philosophy of Science*, 73 (5), 2006, pp. 571-58 - “Intuition, Objectivity and Structure”, in
*Intuition and the Axiomatic Method*, E. Carson and R. Huber (eds.), Western Ontario Series for Philosophy of Science, Reidel, (2006 ) pp. 133-153. - “Category Theory as a Framework for an
*In Re*Interpretation of Mathematical Structuralism”, in*The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today*, J. van Benthem, G. Heinzmann, M. Rebuschi and H. Visser (eds.), Kluwer (2006). *Philosophia Mathematica*, Volume, 13 (1), 2005 pp. 1- 43.- “Présentation du programme sémantique de Carnap dans le cadre de la théorie des catégories”, M. Paquette (trans.), in
*Carnap Aujourd' hui*, Collection Analytiques; 14, M. Paquette, F. Rivenc (eds.) , Éditions Bellarmin (2003), pp. 277-295 . - “Logicism, Structuralism and Objectivity”,
*Topoi*: Special Issue – Mathematical Practice, Volume 20 (2001), pp. 79-95. - “Category Theory: The Language of Mathematics”,
*Philosophy of Science*66 3 (Supplement), 1999 pp. S14-S27. - “Category Theory as a Framework for Mathematical Structuralism” in
*The 1998 Annual Proceedings*of the Canadian Society for the History and Philosophy of Mathematics (1999), pp., 133-142. - “Category-Theoretic Realism” in
*The 1995 Annual Proceedings*of the Canadian Society for the History and Philosophy of Mathematics (1996), pp., 186-201.

Document Actions